Small But Mighty, the LSI 39 Range Offers Breakthrough In Precision Actuation

ThinGap has continued the build-out the LS Series of slotless motor kits with release of the LSI 39 parts offering. The new LSI 39’s, with their small 39 mm (1.5 inch) outer diameter (OD), are targeted for use in robotics, gimbals and precision industrial applications, including semiconductor production and test equipment. Like all LSI products, they can also be modified for vacuum compatibility, as needed in Space-based systems.

The new LSI 39 motors are available in three different axial heights (10 mm, 17 mm, and 39 mm) and are zero cogging, low in profile and have a highly linear torque output. The motors are intended to fit between the existing LSI 25 and LSI 51 motor kits, and can deliver between 0.03 and 0.28 N-m of continuous torque at 6,400 RPM.

Low-rate product quantities of the new LSI 39 products will be shipped to customers in early February. Complete datasheets and CAD model are available at thingap.com for immediate design considerations.

To see the full LS Series of motor kits, click here.

ThinGap Demonstrates Large Motor Capability with the Delivery of its LSO 393

Camarillo, CA (January 11, 2022) – ThinGap has delivered its latest large-size production unit, the LSO 393-31 motor kit to a commercial customer. The LSO 393-31 motor kit has an outer diameter (OD) of 393 mm and an axial height of 31 mm, providing a continuous torque output of 14.47 N-m, and a peak torque of 93.0 N-m.

With 20 years of experience in the design and production of its slotless motor kits, ThinGap is able to leverage proven analytical models and advanced design optimization that results in highly accurate transitions from predicted performance to test results. Furthermore, the process steps needed to produce motors of all sizes is highly scalable. ThinGap has shipped “large” class motors in the nominal sizes of 230-, 280-, 400-, 500-, and 600-mm OD, ranging in output of 10 to 400 kW of output energy.

Customers looking for unique and demanding performance requirements have repeatedly come to ThinGap for custom, application-specific, and modified-standard products to meeting their demanding applications. The recent repeated delivery of the LSO 393-31 is yet another example of this capability.

New LSI 39 Expands LS Line And Offers Deep Integration

ThinGap has continued the build-out the LS Series of slotless motor kits with the latest release, three different LS “in-runner” frameless motor kits. The new LSI 39 products have an outer dimension (OD) of 39 mm or 1.5 inches, and are available in three different axial heights of 10 mm, 17 mm, and 39 mm. These motors are able to deliver between 0.033 and 0.279 N-m of continuous torque at 6,400 RPM. Much higher levels of peak torque are possible for shorter durations. Low rate product quantities of the new LSI 39 products will be shipped to customers in January 2022, and complete datasheets and CAD model are available for immediate design considerations.

Like all ThinGap motors, aside from being cogless, the stator windings are very thin and the rotor is optimized, resulting in a precision movement within a low-profile form factor with a very large through-hole. The LS line of torquer motors is being widely used in gimbals, optics, robotics and precision industrial applications that need cogless movement and are also looking for efficiency, low harmonic distortion, highly linear torque output and a compact form factor.

“The addition of a new smaller-sized set of motor to the LS Series really helps fill out the lower end of the product line,” said Joseph Kay, Director of Engineering at ThinGap. “We continue to establish ourselves as the market leader for slotless motor kits and assemblies, whether as part of our Standard Products or commonly modified-standard, and custom designs.”

This new variant of the LS fits in between the already established LSI 25 and LSI 51 motors sized motor sets and is part of the ongoing addition of variants within ThinGap’s LS product line. The LS Line of is ideally suited for smooth and precise motion in targeted applications in the typical aerospace, medical, precision industrial and communications markets. With OD sizes from as small as 25 mm and up to 267 mm, the LS line range in continuous torque from 0.1 N-m up to 12 N-m.

ThinGap Staff Renews and Expands its Annual IPC J-STD Training

As a leading maker of high-performance motor kits used in a range of applications, ThinGap’s staff recently completed its annual IPC J-STD Training and Certification.


ThinGap is ISO 9001:2015 certified and supports customer-specific flow downs as part of program compliance and its Quality Management System. Industry-leading process and workmanship standards, such as IPC J-STD for soldering, are used throughout the production process. The annual training and certification of the J-STD is a key aspect of ThinGap’s quality control.

IPC is the global association that helps manufacturers and electronics industry suppliers build electronics and electronic components to higher standards. Like in years’ past, ThinGap production staff as well as quality control personnel underwent training to the IPC J-STD-001 specification. J-STD-001, is the Requirements for Soldered Electrical and Electronic Assemblies and the preeminent standard for electronics assembly manufacturing. The standard describes materials, methods, and verification criteria for producing a broad range of high-quality interconnections and emphasizes process control.

Workmanship standards, such as IPC J-STD and others like the American National Standards Institute or “ANSI” standards, are used throughout ThinGap’s production process. Furthermore, all documents and procedures are controlled by the Company’s Product Lifecycle Management (PLM) system.

ThinGap has a track record of supporting the exacting requirements for its base of Fortune 500 companies, Government customers including NASA, and regulatory specifications across multiple sectors, be it Space, Medical, Defense or Airborne.

ThinGap Announces Delivery of its new LSI 267-58 Motor Kits to Customers

ThinGap has delivered the first production units of its new LSI 267-58 motor kits to commercial customers. The new LSI 267-58 motor kit has an outer diameter (OD) of 267 mm and an axial height of 58 mm, nearly double that of its smaller counterpart motor, the LSI 267-32. The new LSI 267-58’s increase in axial height more than doubles the continuous torque output to 24.4 N-m, up from 11.5 from the LSI 267-32. In addition, peak torque has grown three-fold, from 68.1 N-m to 191.0 N-m.

The outer diameter of the LSI 267 motor kits is approximately 10.5 inches across, making it the same size as a small pizza. The LSI 267 kits are targeted at in gimbals and industrial applications that need cogless movement and are also looking for highly linear torque output, a low profile and a large through hole.

With OD sizes from as small as 25 mm and up to 267 mm, the LS line ranges in continuous torque from 0.1 N-m up to 24.0 N-m. Standard, modified-standard, and custom designs are available in both in-runner (rotor position relative to the stator) and out-runner configurations.

Five Reasons Why ThinGap Is A RWA/CMG Motor Leader

From aerospace to motorsports, many industries rely on ThinGap’s cogless motor technology. One of the largest applications for ThinGap’s patented motor technology has been active control systems for satellites. Satellites of all sizes require the ability to control their orientation in orbit, what is referred to as “Attitude Control.”  Whether commercial or defense in nature, LEO spacecrafts need Attitude Control that enables high accuracy pointing capabilities so that desired objects of interest, point-to-point communication or optical platforms can be effectively utilized.

Active control systems, such as Reaction Wheels Assemblies (RWA) and Control Moment Gyroscopes (CMG), require highly efficient motors for torque and actuation. With two lines of high performance slotless motors — both with space heritage, ThinGap’s cogless motor technology is well suited for these Attitude Control solutions.

Here are the top five reasons why ThinGap is the industry leader for RWA and CMG motors.

  1. HIGH EFFICIENCY | For reaction wheel motors, ThinGap supplies ironless or “air core” stators made of fine stranded wire for the coil. This lends itself to very low drag at high operating speeds, with a significant improvement over traditional iron core slotted motors. Additionally, the torque capacity is increased across the full operating range for the same momentum storage capacity.
  2. HIGH TORQUE AND INERTIA-TO-WEIGHT RATIOS | ThinGap’s ironless stator puts all the magnetics, the heaviest part of the motor, in the rotor. This maximizes the inertia for a given weight and size requirement. The reaction wheel’s necessary flywheel mass can be reduced, and sometimes fully incorporated into the rotor. The resulting package is lighter weight for the same momentum storage capacity.
  3. HIGH PRECISION | ThinGap’s motors use a wave-wound coil, which results in a back EMF that is sinusoidal with a total harmonic distortion of less than 1%. When paired with a sinusoidal drive, torque ripple is minimized and much lower than similar motors. Additionally, the ironless stator produces absolutely zero cogging motion. In combination, these aspects produce the highest precision RWA motor available.
  4. DYNAMIC RESPONSE | Due to no iron saturation in the stator, ThinGap’s peak torque capacity is much higher for a similar weight motor. This gives a dynamic response significantly better than the competition at a lighter weight.
  5. COMPLIANCE AND CAPABILITY | ThinGap designs and builds its motors in the USA and provides highly engineered solutions and program support. Since 2015, thousands of Space-grade or MIL-STD rated motor parts have shipped for use in commercial satellites, UAVs, military aircraft, and NASA flight programs.

The TG Series‘ and TGR Series‘ high-speed, high-efficiency is ideal for momentum-wheels in both RWA and CMG. The LS Series’ high-torque, lower-speed precision movement is perfect for gimbal applications, like those in a CMG architecture and related Satcom and Optical applications.

Since 2015, ThinGap has shipped thousands of space-grade or MIL-STD rated motor parts for use in commercial satellites, UAV, military and commercial aircraft, and flight-grade NASA programs.

ThinGap’s Motor Tech Covered By Partner Sierramotion

ThinGap’s motor technology has been covered in a very informative article by our close business partner Sierramotion entitled “DIRECT DRIVE – AN ENGINEER’S GUIDE”.

The Applications Team at Sierramotion recently posted a blog on their company’s website where they outlined the desired motor performance in Direct Drive applications, focusing on characteristics such as zero-cogging, and large internal diameter.  While ThinGap was not mentioned by name (no vendors were), an image of the LS Series slotless motor kit was prominently shown.

One interesting excerpt from the post related to motors is sited below:

“The accurate definition of a motor has to do with its mechanism for generating torque or force and how many electromagnetic phases it has and how they are controlled/commutated. Electromagnetic (EM) torque/force production is derived from an interaction between two magnetic fields or through a change in reluctance or permeance with position/angle, (or some combination of these two main groups). There are four main electromagnetic motor types in use today; brush commutated DC or AC motors, electronically commutated Synchronous Permanent Magnet Motors (AKA Brushless DC), AC Induction Motors (AKA Asynchronous), and electronically commutated Variable Reluctance (AKA Switched Reluctance). Of course, there are hybrid combinations of these technologies also in use. There aren’t any new forms of EM torque generation, in spite of what you may read on the internet.”

To read the complete Sierramotion post, click here

How Gimbals Work

One of the largest use-cases for ThinGap’s slotless motors are Gimbals, so much so that it considers itself to be the performance leader in Gimbal motors. From handheld applications for action cameras to large platforms designed for satellite-to-satellite communication, the applications of gimbals are endless. By using an array of different sensors and motors to counteract movement, electrically controlled gimbals serve to keep platforms stable and focused.

The three forces that gimbals are designed to counteract are tilt and pan (directional horizontal rotation), and roll (vertical rotation). These three axes of movement are counteracted by the sensors and electric motors that work to counteract the forces enacted on the platform. No matter the orientation, whatever is on the platform is held stable and even. By counteracting the forces of gravity with brushless electric motors, orientation can be held indefinitely (within reason). In the world of airborne and space Gimbals, three-axis refer to the angular movement as being Azimuth, Elevation, and Roll.


Image Credit: ResearchGate

In large systems, such as Turrets, the inner design works as a Gimbal allowing for control over roll movement and can be used in aircraft and satellites. On aircraft, optical platforms such as infrared, visible light, and lasers can be mounted on a Gimbal platform that is then fixed to a turret and placed within a fairing to protect it from aerodynamic forces.

Satellites use Gimbals for communication in a similar method for pointing and positioning, with the gimbals acting as the turret and gimbal unit alone, and a device called a fast-steering mirror delivering fine precision control that ensures a reliable optical data connection between satellites, either between low Earth orbit and geostationary satellites and between low Earth orbit satellites. This communication is conducted through pulses of laser light that transmit digital data in a similar manner to Morse Code used by telegraphs of the 19th century but in a far faster manner.


Image Credit: JAXA

What makes ThinGap motors ideal for Gimbal applications is the unique motor architecture that provides smooth movement. This smooth movement is zero-cogging which is afforded by ThinGap’s patented method for distributing stator coil wire windings within a thin cross section that eliminates traditional stator teeth, resulting in a motor without cogging torque.

Cogging is an unwanted magnetic torque disturbance caused by the winding patterns around the stator’s iron teeth that are the basis of “slotted” motors. Slotless motors eliminate cogging torque and offer smooth motion that is critical to optical systems for precision aiming, point and zooming at long standoff distances, and smooth motion for precise scanning.

ThinGap’s line of slotless motor kits feature high-performance, zero-cogging, high efficiency, and a lightweight design. The motor kits are ideal for smooth and precise motion. The entire LS Series offers a large through-hole and a low-profile form factor, ideal for integration into a wide range of different platforms. LS motors offer torque performance equivalent to traditional frameless motor kits available on the market, but unlike other slotless motor solutions, does not require a trade-off between torque output and smoothness.

New LSO Series of “Out-Runner” Motor Kits Now Available

ThinGap has made available two new variants of its successful LS Series of torque motor products: the LSO 225-51 and LSO 225-66. The new parts are 225 mm wide and either 51 or 66 mm tall, respectively. Using an outrunner architecture (where the rotor revolves on the outside, as opposed to the inside of the stator), the new motor kits offer a mechanical feature that is beneficial to applications needing outside rotation around a stationary center. Prior custom LSO models have been developed for use in gimbals and satellite-based laser communication systems.

Like other ThinGap motors, these outrunner motors provide the same cogless motion, high torque output and overall efficiency as the in-runner line of LS motor kits. As an example, the LSO 225-66’s continuous torque of 17.86 N-m and 1.315 N-m/√W motor constant. They also offer a stator with a thin radial cross-section and optimized permanent-magnet rotor. This results in a large aperture while being weight-optimized and low profile. The LSO 225-51 has a part set mass of just 2.4 kg and a 198 mm through hole, representing 88% of the part’s outer diameter (OD).

The LS Series of frameless motor has been built by ThinGap over the last five years and now offers more than 20 different models. They range in size from 25 mm up to 267 mm OD, and numerous axial heights, all providing highly scalable power and torque outputs.
Along with the two new LSO products detailed herein, the existing line of LS motors are in-runner types, as denoted by the product prefix of “LSI”.

ThinGap expects to release additional sizes to build out the LSO product line in 2022.

ThinGap Participates in the 36th Space Symposium

ThinGap participated in the 36th Space Symposium in Colorado Springs on August 24-26, 2021. The company was represented at the show by its CEO, John Baumann and Matt Panesis, its lead Applications Engineer. Additional members of ThinGap network of sales representatives were present at the show. In addition to meeting potential customers, domestic and international Space agencies, and industry partners, ThinGap proudly demonstrated a working unit of its recently released H-LSI 75-12, a turnkey Direct Drive Motor Assembly based on the company’s slotless motor technology.

John Baumann, ThinGap’s CEO, commented on the event, “After the last year and a half, it’s great to be back out on the road and meeting with customers, especially those in the critical Space sector. It was beneficial to not only meet with our customers and the Government sponsors, but also to network with industry partners and would-be collaborators.”

ThinGap slotless motors are widely used in many space applications, including Reaction Wheels, Control Moment Gyroscopes, Gimbals, Point-and-Track SATCOM, Pumps and other precision actuation functions need in satellites and spacecraft. For vacuum-compatible motor kits, ThinGap will provide a custom variant of its commercial off-the-shelf motor. With these modifications, the motor kits can address the need for various program specifications, including low outgassing materials, specialty electronics, and in some cases, redundant stator windings to provide mission-critical assurance.

Space Symposium, held at The Broadmoor in Colorado Springs, Colorado, USA, has brought together space leaders from around the world to discuss, address and plan for the future of space since the inaugural event in 1984. In recent years, the Space Foundation team has welcomed more than 14,000 people from around the world, including speakers, attendees, exhibitors, volunteers, educators, and students. Space Symposium has become widely known as the premier U.S. space policy and program forum for information on and interaction among all sectors of space.