Author Archives: Cody Belichesky

Emerging Applications for Highly Efficient Slotless Motors

ThinGap’s cogless motors have found success with novel and emerging applications due to their high efficiency, low-profile, smooth motion, and scalable architecture.

A yellow unmanned underwater vehicle fades into the murky darkness of the sea, with sunlight filtering through, while an exploded view of a housed TG motor sits beside it

ThinGap’s zero-cogging, high performance motor kits are ideal for many aerospace and medical applications, such as gimbals, reaction wheel assemblies, and surgical robotics but are not limited to just these.  Demand has also come from unique market segments, where customers with emerging applications like energy storage, submersibles and advanced generators need ThinGap’s slotless motors. Slotless motors offer the benefits of smooth, cogless motion and high efficiency, with custom and modified features allowing for deep integration.

Flight simulation and human interface applications desire low hysteresis and pure haptic feedback capabilities.  Unmanned systems, whether airborne or underwater require high efficiency that equates to weight savings.  Starter-generators provide a dual function in UAV applications, with high cranking capability to start the engine, and then high efficiency with a clean signal output as a generator. Submergible systems can benefit from the rugged nature of slotless motors and their inherent ability to be fully encapsulated as part of their normal fabrication process. Flywheel applications, whether the well-established use of momentum storage in Reaction Wheel Assemblies (small satellite attitude control) or larger-scale ones used for gyro-stabilization or energy storage benefit from high-speed operation, and the maximum amount of inertia for a given weight.

Unmanned Underwater Vehicles

An emerging use for ThinGap’s brushless DC motors is in underwater propulsion. ThinGap motors are ideal for underwater direct drive propulsion because of a high torque-to-diameter ratio. With no gearbox, there’s no drivetrain losses, lower assembly weight, increased torque, and greater reliability. Ring architecture allows propulsion to be directly outside of the rotor (propeller), or inside (impeller).  High motor efficiency, low-noise underwater thrusters are ideal for the fast growing ROV, UUV, and AUV market segments.

Flight and Control Simulator Equipment

From aerospace to motorsports, simulation equipment is necessary to ensure immersion so professionals can hone their skills. ThinGap’s frameless architecture and smooth cogless motion makes it the ideal solution where a human operation or system need force sensing. Haptic systems require accurate torque feedback, without mechanical disturbances to improve the human control experience. ThinGap’s motor kits have near zero Eddy-current, low hysteresis, and a harmonic distortion of less than 1%, so torque output is directly proportional to current throughout the operating range.

Flywheel and Energy Storage

The air-core architecture’s inherent high speed operation with high efficiency is why ThinGap motors are ideal for both energy generation and storage. Scalable to large sizes and high speeds while maintaining a high power-to-weight ratio as well as weight optimized components yields highly specialized mass profiles. Targeted flywheel applications include Space-rated Reaction Wheel Assemblies, gyro-stabilization for large spacecraft and marine vessels, or novel methods to store and generate power as part of a clean energy strategy.

Starter/Generators

In both ground and airborne systems, as a starter-generator, ThinGap’s TG Series of air-core, impedance stators provide a stable, sinusoidal, low-droop voltage source and with an extremely high-power factor.  ThinGap motors are a pure three phase voltage output with less than 1% harmonic distortion. In addition, with a large aperture architecture, affording the kit a thin radial cross section, so a large through hole and very lightweight with system efficiency of up to 95%.

To learn more about ThinGap’s motor kits, click here.

Low Profile, High-Torque Precision Motors for Semiconductor, Packaging and Test Equipment

With demand for electronics at an all-time high and a global supply shortage, the Semiconductor Equipment industry is busier than ever. Today’s modern wafer processing, automatic test and packaging system have a need for increased force density and high resolution move and hold steps. Highly precise, yet compact designs help enable inline process steps that are critical to higher throughput.

A photo of semiconductor equipment with the ThinGap LS motor kit superimposed.

There are many needs for high precision BLDC electric motors in every stage of semiconductor production, from wafer processing all the way to inline testing. Motor selection is critical to system architecture, and factors in control methods, feedback requirements, and mechanical attributes.

Motors and actuators used for these applications are required to deliver cogless and absolute precision. Low profile motor architecture is ideal, because of the large internal aperture so optics or cabling can be routed through the middle. In addition to wafer positioning, precision motors are needed to direct optical systems, such as beam steering, with precision actuation to deliver precision to the micron level.

The continued use of Direct Drive solutions enables system-level advancements needed by semiconductor processing and test equipment.  Rapid and accurate movement defines the performance specifications.

Beyond zero cogging, ThinGap motor kits have near zero Eddy-current, low hysteresis, and a harmonic distortion of less than 1%, so torque output is directly proportional to current throughout the operating range. The resulting smooth motion, linear output, and low profile of ThinGap’s motor kits make them perfect for use in precision applications. Slotless motor kits with high torque, direct-drive capabilities are in many cases the ideal solution for semiconductor equipment.

ThinGap’s LS Series of slotless motor kits is an industry leader for applications requiring performance and efficiency. Standard LS motor kits range in size from 25 to 267 mm diameter and produce torque from 0.1 to 12.0 N-m continuous. With standard and modified configurations, the product line will cover voltages from 24-400 volts and current from 1 to 100 amps.

To learn more about the LS Series, click here.

High Torque, Low Profile Precision Motors for Optical Communication Terminals and Coarse Pointing Assemblies

With the fast and aggressive build out of Space, namely the rapidly growing number of LEO constellations orbiting Earth, comes the pervasive need for free-space optical communications that allows space-to-space, space-to-air and space-to-ground connections. Point-to-point use of highly collimated light in high-bandwidth communication is critical to the utility of “mesh networks” connecting each spacecraft with each other and to the ground.

A satellite sits above the earth, shooting a laser off to presumably another satellite, with a ThinGap LSO 225 superimposed

Space-rated gimbals used for Satcom and Optical systems need high torque actuation that allows for decisive move-and-hold positioning and smooth motion for long-range target lock. With size and weight constraints being a design objective for spacecraft, a large aperture, low-profile is ideal for deep integration and desired performance. Zero cogging and high linear torque output inherently come with the slotless architecture.

Multi-axial gimbaling mechanisms, like those used in Coarse and Fine Pointing Assemblies can leverage the benefits of high performance Ring Motors to directly drive movement and maintain position. Frameless motor kits offer the further ability integrate the actuation function as part of optimized systems. Optimized systems offering Size, Weight and Power (SWaP) savings, which is highly desirable in any kind of spacecraft application.

Other Space-systems, like larger gimbal-based Control Moment Gyroscopes (CMG) are used for Attitude Control in larger satellites requiring greater quantities of torque and precision. In some cases, to quickly and precisely move in both azimuth and elevation, and in other cases, to quickly compensate for external “tumbling” disturbances common in orbit.

ThinGap’s LS Series of slotless motor kits is an industry leader for gimbal applications requiring high performance and efficiency. Using a proprietary design, thin wire-wrapped stators and optimized permanent-magnet rotors, ThinGap provides that can match the torque output of slotted motors while avoiding the cogging that plagues them.

ThinGap’s LS line of slotless motor kits range in size from 25 to 267 mm diameter and torque from .1 to 12 N-m continuous. With standard and modified configurations, the product line will cover voltages from 24-400 volts and current from 1 to 100 amps. Hall devices and special configurations are also available.

To learn more about the LS Series, click here.

ThinGap Participates in the 37th Space Symposium

ThinGap will be participating in the 37th Space Symposium in Colorado Springs on April 4-7, 2022. The company will be represented at the show by CEO, John Baumann, and Lead Applications Engineer, Matthew Panesis. Also present at the show will be members of ThinGap network of sales representatives. Besides meeting with existing and potentially new customers, domestic and international space agencies, and industry partners, a working unit of ThinGap’s H-LSI 75-12 turnkey Direct Drive Motor Assembly (image) based on the company’s slotless motor technology will be demonstrated at the ESI Motion booth (booth #612).

Matthew Panesis, ThinGap’s Applications Engineer commented on the event, “With the recent launch of our new TGR Series of Reaction Wheel Assembly motor kits, the timing is perfect to update our business partners, as well as customers about this new space-rated offering. In addition, we’re proud that our colleagues at ESI Motion will be demonstrating our Direct Drive Motor Assembly being driven by their control electronics.”

ThinGap slotless motors are widely used in many space applications, including Reaction Wheels, Control Moment Gyroscopes, Gimbals, Point-and-Track Satcom, Pumps and other precision actuation functions needed in spacecraft. For vacuum-compatible motor kits, ThinGap can easily provide variants of its commercial off-the-shelf motors. With these modifications, the motor kits can address the need for various program specifications, including low outgassing materials, specialty electronics, and in some cases, redundant stator windings to provide mission-critical assurance.

Space Symposium, held at The Broadmoor in Colorado Springs, Colorado, USA, has brought together space leaders from around the world to discuss, address and plan for the future of space since the inaugural event in 1984. In recent years, the Space Foundation team has welcomed more than 14,000 people from around the world, including speakers, attendees, exhibitors, volunteers, educators, and students. Space Symposium has become widely known as the premier U.S. space policy and program forum for information on and interaction among all sectors of space.

Reaction Wheel Assembly Motors by ThinGap

Small form-factor and high inertia-to-weight ratio ideal for microsatellites

Today’s Low Earth Orbit (LEO) satellites, including “SmallSat” and “CubeSat” microsatellites require a range of critical functions to serve their mission as cost-effective spacecraft. One of the most important functions is Attitude Control, which enables high accuracy pointing capabilities.

Reaction Wheel Assemblies (RWA) are used for multi-axis Attitude Control. RWAs use multiple motors that each spin at varying speeds creating a change in kinetic energy in the desired axes. RWAs utilize optimized rotating inertia, speed, and torque to accomplish this.
Motors used in RWAs need to have the optimal balance between torque and inertia, with negligible rotational losses and smooth motion performance. Zero cogging is critical to achieving this smooth motion. Additionally, parts must be made with low-outgassing materials, have flight heritage, and be sourced from suppliers that can support space programs’ stringent requirements.

ThinGap has tuned its product offering of “air core” motors to meet the demands of this application. This moving magnet air-core motor lends itself to very low drag at high operating speeds, and a wide speed range with constant torque. ThinGap’s ironless stator puts all the magnetics (the heaviest part of the motor) in the rotor, maximizing the inertia for a given weight and size requirement. The reaction wheel’s necessary flywheel mass can be reduced, and sometimes fully incorporated into the rotor. The resulting package is lighter weight for the same momentum storage capacity.

Smooth operation is achieved through a zero cogging slotless design that maintains sinusoidal torque versus angle curves with total harmonic distortion of less than 0.5%. The precision wound coil results in a phase-to-phase balance within 1%. Hands down, ThinGap has the highest precision RWA motors available, yielding pure torque vector control, with very low losses and zero cogging.

Motor sizes range from 25mm to 250mm in diameter and axial heights as small as 22 mm, with through holes up to 80% of the outside diameter. Since 2015, ThinGap has shipped thousands of Space-grade or MIL-STD rated motor parts for use in commercial satellites, military and commercial aircraft, and flight-grade NASA programs.

ThinGap Motors Used For RWA Applications

ModelODWeightSpeedContinuous Torque

New

TGR 29-1229 mm0.03 kg6,000 RPM0.012 N-m
TGR 45-2045 mm0.11 kg10,000 RPM0.075 N-m

Coming Q3 2022

TGR 79-2679 mm0.26 kg16,000 RPM0.664 N-m
Existing RWA MotorsTG384276.2 mm0.14 kg28,400 RPM0.190 N-m
TG51XX136.4 mm0.51 kg<10,000 RPM3.57 N-m
TG71XX182.0 mm0.75 kg<10,000 RPM4.83 N-m

To learn more about the TGR Series of motor kits, click here.

Space-Rated Gimbal Motors For Satellite Communication

The use of gimbals is becoming pervasive in Low-Earth-Orbit (LEO) Satellites and even ground-based systems. A heavy reliance on gimbal-based systems is an important part of the Defense Agencies’ critical Intelligence, Surveillance and Reconnaissance (ISR) objectives. In addition to defense, there are emerging uses in communications, and remote imaging applications.

Satellites use Gimbals for communication in a similar method for pointing and positioning, with the gimbals acting as the turret and gimbal unit alone, and a device called a fast-steering mirror delivering fine precision control that ensures a reliable optical data connection between satellites, either between low Earth orbit and geostationary satellites and between low Earth orbit satellites.

Multiaxial gimbals require high performance motors to directly drive their movements and to hold position. Advanced space-rated gimbal systems, like those used in Control Moment Gyroscopes (CMG), require a large amount of torque. In some cases, to move in both azimuth and elevation quickly and precisely, and in others to quickly compensate for external “tumbling” disturbances common in orbit.

One of the largest use-cases for ThinGap’s slotless motors are Gimbals, so much so that it considers itself to be the performance leader in Gimbal motors. From handheld applications for action cameras to large platforms designed for satellite-to-satellite communication, the applications of gimbals are endless. By using an array of different sensors and motors to counteract movement, electrically controlled gimbals serve to keep platforms stable and focused. Last summer, ThinGap delivered a series of motor kits to NASA for use in a space-based gimbal application, which serves as a testament to the quality and processes at ThinGap.

Using its proprietary design, thin wire-wrapped stators, and optimized permanent-magnet rotors, ThinGap provides motors with specifications that can match the torque output of slotted motors while avoiding the cogging that plagues them. Ring motors are the perfect form factor for gimbals with their round shape, direct drive mounting capability and empty center.

ThinGap’s motor kits offer a large through hole, usually 65% of more of the device’s outer diameter (OD), due to its efficient mechanical design and optimized components. ThinGap’s LS line of slotless motor kits range in size from 25 to 267 mm diameter and torque from 0.1 to 12 N-m continuous. With standard and modified configurations, the product line will cover voltages from 24-400 volts and current from 1 to 100 amps. Hall devices and special configurations are also available.

To learn more about the LS Series, click here.

The Industry’s First Application-Specific Reaction Wheel Motor Line The “TGR” Series of High Efficiency, High Inertia, Ironless-Core Motors

ThinGap has made available two new Space-rated frameless motor kits specifically designed for Reaction Wheel Assemblies (RWA) used to control small and miniaturized satellites. The new TGR 29-12 and TGR 45-20 are an extension of the widely used TG Series of aerospace motors supplied by ThinGap for nearly two decades.  The vacuum compatible parts are 29mm and 45mm wide, and 12mm and 20mm tall, respectively.

ThinGap’s patented motor architecture has inherent advantages in RWA and flywheel applications: an efficient ironless core, zero cogging stator, high torque capacity, dynamic responsiveness, and overall weight savings.

The “air core” architecture lends itself to very low drag at high operating speeds and cogless torque. The wave-wound design of the stator produces a sinusoidal Back-EMF with total harmonic distortion of less than 1%. The precision hand wound coil results in a phase-to-phase balance within 1 degree. In combination, these produce the highest precision RWA motors available which yields essentially pure torque vector control with very low losses and zero cogging.

The new TGR’s design puts all the magnetics (the heaviest part of the motor) in the rotor, maximizing the inertia for a given weight and size. The resulting package is lighter weight for the same momentum storage capacity, and because of no iron saturation in the stator, ThinGap’s peak torque capacity is much higher than a similar weight motor. This gives a high dynamic response significantly better than the competition at a lighter weight. The motors are also highly efficient (up to 95%) since the architecture lends itself to very low drag at high operating speeds.

The TGR 29-12’s offers a continuous torque of 0.012 N-m and 0.0054 N-m/√W motor constant. The TGR 45-20 offers a continuous torque of 0.075 N-m and 0.0197 N-m/√W motor constant. This allows the new TGR motor kits to offer more than double the torque of the closest competitor with minimal losses.

Prior TG Series models have been widely used in RWA systems. Sample quantities of the new TGR 29-12 and TGR 45-20 are available with a 12 week lead time.  Additional models of the TGR Series will include a 79 mm and 61 mm OD part set to be released later in 2022.

To learn more, click here.

Small But Mighty, the LSI 39 Range Offers Breakthrough In Precision Actuation

ThinGap has continued the build-out the LS Series of slotless motor kits with release of the LSI 39 parts offering. The new LSI 39’s, with their small 39 mm (1.5 inch) outer diameter (OD), are targeted for use in robotics, gimbals and precision industrial applications, including semiconductor production and test equipment. Like all LSI products, they can also be modified for vacuum compatibility, as needed in Space-based systems.

The new LSI 39 motors are available in three different axial heights (10 mm, 17 mm, and 39 mm) and are zero cogging, low in profile and have a highly linear torque output. The motors are intended to fit between the existing LSI 25 and LSI 51 motor kits, and can deliver between 0.03 and 0.28 N-m of continuous torque at 6,400 RPM.

Low-rate product quantities of the new LSI 39 products will be shipped to customers in early February. Complete datasheets and CAD model are available at thingap.com for immediate design considerations.

To see the full LS Series of motor kits, click here.

ThinGap Demonstrates Large Motor Capability with the Delivery of its LSO 393

Camarillo, CA (January 11, 2022) – ThinGap has delivered its latest large-size production unit, the LSO 393-31 motor kit to a commercial customer. The LSO 393-31 motor kit has an outer diameter (OD) of 393 mm and an axial height of 31 mm, providing a continuous torque output of 14.47 N-m, and a peak torque of 93.0 N-m.

With 20 years of experience in the design and production of its slotless motor kits, ThinGap is able to leverage proven analytical models and advanced design optimization that results in highly accurate transitions from predicted performance to test results. Furthermore, the process steps needed to produce motors of all sizes is highly scalable. ThinGap has shipped “large” class motors in the nominal sizes of 230-, 280-, 400-, 500-, and 600-mm OD, ranging in output of 10 to 400 kW of output energy.

Customers looking for unique and demanding performance requirements have repeatedly come to ThinGap for custom, application-specific, and modified-standard products to meeting their demanding applications. The recent repeated delivery of the LSO 393-31 is yet another example of this capability.

New LSI 39 Expands LS Line And Offers Deep Integration

ThinGap has continued the build-out the LS Series of slotless motor kits with the latest release, three different LS “in-runner” frameless motor kits. The new LSI 39 products have an outer dimension (OD) of 39 mm or 1.5 inches, and are available in three different axial heights of 10 mm, 17 mm, and 39 mm. These motors are able to deliver between 0.033 and 0.279 N-m of continuous torque at 6,400 RPM. Much higher levels of peak torque are possible for shorter durations. Low rate product quantities of the new LSI 39 products will be shipped to customers in January 2022, and complete datasheets and CAD model are available for immediate design considerations.

Like all ThinGap motors, aside from being cogless, the stator windings are very thin and the rotor is optimized, resulting in a precision movement within a low-profile form factor with a very large through-hole. The LS line of torquer motors is being widely used in gimbals, optics, robotics and precision industrial applications that need cogless movement and are also looking for efficiency, low harmonic distortion, highly linear torque output and a compact form factor.

“The addition of a new smaller-sized set of motor to the LS Series really helps fill out the lower end of the product line,” said Joseph Kay, Director of Engineering at ThinGap. “We continue to establish ourselves as the market leader for slotless motor kits and assemblies, whether as part of our Standard Products or commonly modified-standard, and custom designs.”

This new variant of the LS fits in between the already established LSI 25 and LSI 51 motors sized motor sets and is part of the ongoing addition of variants within ThinGap’s LS product line. The LS Line of is ideally suited for smooth and precise motion in targeted applications in the typical aerospace, medical, precision industrial and communications markets. With OD sizes from as small as 25 mm and up to 267 mm, the LS line range in continuous torque from 0.1 N-m up to 12 N-m.