Monthly Archives: February 2023

High Performance Zero-Cogging Motors For UAS Applications

Unmanned aerial systems of all sizes and shapes have varying requirements in terms of payloads and flight ranges. From Group 1 to 5 UASes, there is a need for electric motors offering high power, efficiency, and light weight for all forms of onboard actuation.

A graphic showing a graphic of a General Atomics MQ4 Reaper, next to the gimbal of a Northrop Grumman MQ-8C and a ThinGap LSI 75 slotless motor kit.

Multiaxial gimbals require high performance motors to directly drive their movements and hold position. In airborne systems, high performance is defined by Size, Weight, and Power (“SWaP”), as well as smooth motion. Gimbal makers have an inherent need for a high amount of torque, in some cases to move large payloads quickly and precisely and stabilize the housing against forces caused by aerodynamic drag. ThinGap’s LS Series of slotless motor kits is an industry leader for gimbal applications requiring high performance and efficiency, as well as decisive positioning and smooth motion. Their ring architecture allows for optimized optical designs, by allowing critical parts of the system, such as lenses or cabling, to be integrated through the large through hole in the center of the motor.

Another airborne application where ThinGap’s motor technology provides a competitive edge is as a starter-generator. There is a long-standing truism that good motors make good generators, and for starter-generator applications, ThinGap’s TG Series is the industry leader. This is enabled by the light wave-wound composite stator, and weight-optimized rotor with large clear internal aperture, which can be integrated into both piston and turbine engines. The TG Series offers high efficiency, high peak torque, low harmonic distortion, and weight optimization which are all desired traits. In the case of UAS applications, ThinGap motors can start the Internal Combustion Engine with its high peak torque, then switch to act as a generator to supply valuable conditioned power to onboard systems.

With more than two decades supporting airborne applications, ThinGap can produce motor kits to fit all size and power requirements. To learn more about ThinGap’s motors for airborne applications, click here.

ThinGap Demonstrates High Power Motor Capability with 100 kW Motor Kit

Showcasing ThinGap’s highly scalable slotless motor technology, the TGO 385 was designed with renewable energy in mind, but many potential applications exist.

ThinGap has completed its latest large-size motor prototype, the TGO 385 for a commercial customer. The TGO 385 motor kit has an outer diameter (OD) of 385 mm (15 in.), and an axial height of 223 mm (9 in.), making it about the same volume as a 5-gallon bucket.  The power output capability of the TGO 385 is estimated to be 100 kW or more depending on the application.

Showcasing the highly scalable nature of ThinGap’s motor architecture, the TGO 385 is the newest variant of the TG Series of slotless motor kits. The company’s TG motors are unique in having a stator architecture with an ironless coil. Due to the absence of slots or “teeth”, ThinGap’s stators do not saturate during operation, allowing the motor kit to produce more torque as current is applied, without the falloff seen in traditional iron core motors. Combined with a mechanical design that promotes convective cooling during operation means that the TG Series has unrivaled power density.

The TG Series has been successfully used in a wide variety of generator, propulsion, and flywheel applications, ranging from gyro-stabilization in boats and satellites to airborne starter-generators. To learn more the highly efficient, zero-cogging TG Series of slotless motor kits, click here.

The TGO 385 demonstrates ThinGap’s ability to deliver tailor-made high-power solutions.  With more than two decades of experience in the design and production of slotless motor kits, ThinGap leverages its proven designs and analytical modeling that results in highly accurate transitions from predicted performance to real world operation. Furthermore, the process steps needed to produce motors of all sizes is highly scalable, and ThinGap has shipped large class motors of up to 600 mm OD, ranging from 10-400 kW of output power.